

The 15th Annual Scientific Meeting Thai Medical Physicist Society, 1-3 March 2024

Pradub Atthakorn Memorial Lecture

Monte Carlo Simulation in Medical Physics

Kosuke Matsubara, Ph.D.

Department of Quantum Medical Technology, Faculty of Health Sciences, Kanazawa University, Kanazawa, Japan

☑ Nothing to disclose

1

• Principles of Monte Carlo simulation

• Application of Monte Carlo simulation

• Principles of Monte Carlo simulation

Application of Monte Carlo simulation

Monte Carlo (MC) simulations are the basis of all modern x-ray dosimetry methods in medical physics

- **1. Track the trajectory** of individual x-rays
- Enter the simulated patient/phantom and undergo scattering and absorption events (by pseudo-random real numbers)
- **3. The amount of energy deposited** in the patient/phantom **is tallied** at each location

Flowchart (from incidence to exit of one photon)

Flowchart (from incidence to exit of one photon)

• The probability density function f(L) that a photon will interact with material between depths L and $L + \Delta L$

 $f(L) = \mu \cdot e^{-\mu L}$ (μ : linear attenuation coefficient)

• Its distribution function *F*(*L*):

$$F(L) = \int_{0}^{L} \mu \cdot e^{-\mu l} dl = 1 - e^{-\mu L}$$

• If F(L) is a uniform random number r in the interval [0,1],

$$L = -\frac{1}{\mu} \ln(1-r) = -\frac{1}{\mu} \ln(r) \quad (r = 1 - e^{-\mu L})$$

- Photon before scattering
 - Coordinate (x_0, y_0, z_0)
 - Scattering direction (θ , ψ)
- Free path length L
- Next interaction point (x_1, y_1, z_1) $-x_1 = x_0 + L \cdot \sin \theta \cdot \cos \psi$ $-y_1 = y_0 + L \cdot \sin \theta \cdot \sin \psi$ $-z_1 = z_0 + L \cdot \cos \theta$

Flowchart (from incidence to exit of one photon)

Mass attenuation coefficient

 $\mu(E_0) = \tau(E_0) + \sigma_{coh}(E_0) + \sigma_{incoh}(E_0) + \pi(E_0)$

Obtained from Phics V7

https://www.vector.co.jp/soft/winnt/edu/se526094.html¹

• Total cross section of interaction μ between photon of energy E_0 and material:

$$\mu(E_0) = \tau(E_0) + \sigma_{coh}(E_0) + \sigma_{incoh}(E_0) + \pi(E_0)$$

• Generate random number *r* in the interval [0,1]

Flowchart (from incidence to exit of one photon)

Photoelectric effect

Process of photoelectric effect

Flowchart (from incidence to exit of one photon)

Coherent scattering

- A photon is scattered by a bound atomic electron.
- The atom is neither ionized nor excited.

Incoherent scattering

- A photon collides with an electron, loses some of its energy.
- It is deflected from its original direction of travel.

Process of coherent scattering

Process of incoherent scattering

Process of incoherent scattering (cont'd)

Differential cross section for incoherent scattering

$$\frac{d\sigma_{incoh}}{d\theta} = \frac{d\sigma_{KN}}{d\theta} \cdot S_m(x)$$

$$\frac{d\sigma_{KN}}{d\theta} = \frac{1}{2}r_0^2 \cdot \left(\frac{E_0}{E_1}\right)^2 \left(\frac{E_0}{E_1} + \frac{E_1}{E_0} - \sin^2\theta\right)$$
(Klein-Nishina differential cross section)

 r_0 : Classical electron radius

 $S_m(x)$: Incoherent scattering function for material m

Flowchart (from incidence to exit of one photon)

- Photon before scattering V_1 (θ_1, Φ_1)
 - Scattering angle ω
 - Scattering azimuth Φ
- Photon after scattering V_2 (θ_2, Φ_2)

• Photon before scattering $V_1(\theta_1, \phi_1)$

$$\cos \theta_2 = \cos \theta_1 \cdot \cos \omega + \sin \theta_1 \cdot \sin \omega \cdot \cos \phi$$

$$\sin \theta_2 = \sqrt{1 - \cos^2 \theta_2}$$

$$\sin \phi_2 = \sin \phi_1 \cdot \cos(\phi_2 - \phi_1) + \cos \phi_1 \cdot \sin(\phi_2 - \phi_1)$$

$$\cos \phi_2 = \cos \phi_1 \cdot \cos(\phi_2 - \phi_1) - \sin \phi_1 \cdot \sin(\phi_2 - \phi_1)$$

$$\sin(\phi_2 - \phi_1) = \sin \phi \cdot \sin \omega / \sin \theta_2$$

$$\cos(\phi_2 - \phi_1) = (\cos \omega - \cos \theta_1 \cdot \cos \theta_2) / \sin \theta_1 \cdot \sin \theta_2$$

• Photon after scattering $V_2(\theta_2, \Phi_2)$

Flowchart (from incidence to exit of one photon)

• Principles of Monte Carlo simulation

• Application of Monte Carlo simulation

MC software for performing dose calculations

<u>CT-Expo (CT)</u>

http://www.sascrad.com/information/downloads/

WAZA-ARIv2 (CT)

http://waza-ari.nirs.go.jp/waza_ari_v2_1/

VirtualDoseCT (CT)

 http://www.virtualphantoms.com/our-products/ virtualdose/

<u>VirtualDoseIR (IR)</u>

 http://www.virtualphantoms.com/our-products/ virtualdoseir/

OLINDA (NM)

https://www.doseinfo-radar.com/OLINDA.html

Dose calculation software (Waza-ari v2)

Adult Male (from left to right): thin (-2 σ), standard, fat (+2 σ), obese (+5 σ)

Adult Female (from left to right): thin (-2σ) , standard, fat $(+2\sigma)$, obese $(+5\sigma)$

Boy (from left to right): 0-yr-old, 1-yr-old, 5-yr-old, 10-yr-old, 15-yr-old

Girl (from left to right): 0-yr-old, 1-yr-old, 5-yr-old, 10-yr-old, 15-yr-old

https://waza-ari.nirs.qst.go.jp/ 26

Dose evaluation by MC simulation

- Freely constructs a <u>source model</u> and an <u>object</u> <u>model</u>
- Provides <u>more detailed dose information</u> not available with dose calculation software

MC simulation code

<pre>[[Title]; input file for lecture about tally:</pre>	bat[34] ncas = 1700. : date = 2023- bat[35] ncas = 1750. : date = 2023- bat[37] ncas = 1900. : date = 2023- bat[37] ncas = 1900. : date = 2023- bat[37] ncas = 1900. : date = 2023- bat[37] ncas = 2000. : date = 2023- bat[40] ncas = 2000. : date = 2023- bat[41] ncas = 2000. : date = 2023- bat[41] ncas = 2000. : date = 2023- bat[41] ncas = 2150. : date = 2023- bat[43] ncas = 2150. : date = 2023- bat[43] ncas = 2150. : date = 2023- bat[43] ncas = 2150. : date = 2023- bat[45] ncas = 2150. : date = 2023- bat[45] ncas = 2150. : date = 2023- bat[50] ncas = 2150. : date = 2023- bat[50] ncas = 2150. : date = 2023- bat[51] ncas	$File = track_xy.out$ File = 09h 37m 06s 10-17 : time = 09h 37m 08s 10-17 : time = 09h 37m 08s 10-17 : time = 09h 37m 10s 10-17 : time = 09h 37m 11s 10-17 : time = 09h 37m 11s 10-17 : time = 09h 37m 12s 10-17 : time = 09h 37m 13s 10-17 : time = 09h 37m 14s 10-17 : time = 09h 37m 14s 10-17 : time = 09h 37m 15s 10-17 : time = 09h 37m 15s 10-17 : time = 09h 37m 15s 10-17 : time = 09h 37m 12s 10-17 : time = 09h 37m 24s 10-17 : time = 09h 37m 24s 10-10 10 10 10 10 10 10 10 10 10	<section-header><section-header><section-header></section-header></section-header></section-header>	Date = 09:37 17-Oct-2023 Date = 09:37 17-Oct-2023 emin = 0.0000E+00 [MeV] emax = 5.0000E+00 [MeV] zmin = -5.0000E+00 [m] zmax = 5.0000E+00 [m] part. = all tmin = 0.0000E+00 [nsec] tmax = 1.0000E+06 [nsec] Date = 09:37 17-Oct-2023
		-20	-20 -10 0 10 20	D.4

x [cm]

calculated by PHITS 3.30

Recommendation for ending routine gonadal shielding¹⁾

National Council on Radiation Protection and Measurements

7910 Woodmont Avenue / Suite 400 / Bethesda, MD 20814-3095 http://ncrponline.org

NCRP Recommendations for Ending Routine Gonadal Shielding During Abdominal and Pelvic Radiography

NCRP Statement No. 13, January 12, 2021

Executive Summary

The purpose of radiological protection, including recommendations for shielding, is to reduce the likelihood of possible harm. For medical exposures, the goal is to keep exposures as low as reasonably achievable while simultaneously ensuring that the needed information is obtained. Gonadal shielding (GS) was introduced and widely recommended in the 1950s with the intent of minimizing the potential for heritable genetic effects from medical exposures. Scientific evidence has led the National Council on Radiation Protection and Measurements (NCRP) to reconsider the recommendation for GS. Several factors contribute to NCRP's new recommendation.

Result of absorbed doses (by MC simulation)

1-year-old pediatric phantom (704, CIRS)

Clinical use of radioprotective curtains

Protective curtains are sometimes folded

Folded curtains may not provide adequate protection

Simulation code

PHITS (Japan Atomic Energy Agency)

Curtain length

0-100% (5% increments)

- Relative standard error <1%
- Photon cutoff energy

1 keV

Matsubara K, et al. Phys Eng Sci Med (in press) 32

Dose reduction rates by simulation

Matsubara K, et al. Phys Eng Sci Med (in press) 33

 Modeled CT device Revolution CT Apex (GE Healthcare)

◆ Dual energy CT 80/140 kV

 $(CTDI_{vol} = 11.1 \text{ mGy})$

- Single energy CT 120 kV (CTDI_{vol} = 11.1 mGy)
- 20 20 10² 10² 10 10 Dose [mGy] y [cm] Dose [mGy] y [cm] 0 0 -10 -1010¹ 10¹ -20 -20 10 20 -20 -100 -20 -1010 20 0 x [cm] x [cm]

Single-energy CT 120 kV (CTDI_{vol} = 11.1 mGy) Dual-energy CT 80/140 kV (CTDI_{vol} = 11.1 mGy)

Absorbed doses in dual-energy CT were higher than those in single-energy CT around the mediastinum and the thoracic cage under the same CTDI_{vol}

Dose [mGy]

60

Single-energy CT 120 kV (CTDI_{vol} = 11.1 mGy)

Dual-energy CT 80/140 kV (CTDI_{vol} = 11.1 mGy)

Absorbed doses in single-energy CT were higher than those in dual-energy CT especially at the anterior surface region under the same CTDI_{vol}

60

40

20

Dose [mGy]

MC simulations for dual-source dual-energy CT

Modeled CT device

SOMATOM Force (Siemens Healthineers)

Dose calculation results (Dual-source dual-energy CT)

 Single-energy CT 120 kV (CTDI_{vol} = 10.0 mGy)

Dual energy CT 80/Sn150 kV
 Dual energy CT 100/Sn150 kV
 (CTDI_{vol} = 10.0 mGy)
 (CTDI_{vol} = 10.0 mGy)

- Absorbed doses for 80/Sn150 kV were slightly higher than those for 120 and 100/Sn150 kV at the anterior surface region under the same CTDI_{vol}
- However, they were slightly lower than for 120 and 100/Sn150 kV at the lateral surface regions

10

Uncertainties with MC organ dose estimations in CT¹⁾

- Speeding up MC calculations
 - Acceleration of calculation by parallel computing
 - Output/read of voxel data in binary format
- Dose distribution prediction using neural network model^{1,2)}
 - The collected CT images and the Monte Carlo–produced dose maps were processed and used for the training of the deep neural network (DNN) model
 - Dose maps were produced from CT images using the trained DNN model
 - 1) Tzanis E and Damilakis J. Eur Radiol (2022)
 - 2) Tzanis E, et al. Phys Med (2024)

Workflow and architecture of the DNN

• The training data for the DNN model were retrieved from 119 diagnostic CT examinations and the respective dose maps.

- Organ doses estimated with DNN model and MC simulations
- To evaluate the dose prediction DNN, data from 67 diagnostic CT examinations and the respective dose images, were used.

	DNN (mGy)	MC (mGy)
Lungs	12.0 ± 4.1	12.7 ± 5.1
Liver	18.1 ± 4.6	18.1 ± 4.5
Spleen	18.3 ± 4.5	18.7 ± 4.2
Stomach	17.7 ± 4.4	17.7 ± 4.1
Kidneys	18.6 ± 4.3	18.4 ± 4.0

The developed machine learning-based methodology resulted in a 99 % reduction of the processing time.

Future perspective with the use of MC simulation

MOU was concluded (Kanazawa, 2015) Business meeting TMPS & JSRT (Bangkok, 2016)

MOU has been renewed (Nan, 2023)